Image dehazing is a critical task in image restoration, aiming to retrieve clear images from hazy scenes. This process is vital for various applications, including machine recognition, security monitoring, and aerial photography. Current dehazing algorithms often encounter challenges in multi-scale feature extraction, detail preservation, effective haze removal, and maintaining color fidelity. To address these limitations, this paper introduces a novel Parallel Image-Dehazing Network (PID-Net). PID-Net uniquely combines a Convolutional Neural Network (CNN) for precise local feature extraction and a Vision Transformer (ViT) to capture global contextual information, overcoming the shortcomings of methods relying solely on either local or global features. A multi-scale CNN branch effectively extracts diverse local details through varying receptive fields, thereby enhancing the restoration of fine textures and details. To optimize the ViT component, a lightweight attention mechanism with CNN compensation is integrated, maintaining performance while minimizing the parameter count. Furthermore, a Redundant Feature Filtering Module is incorporated to filter out noise and haze-related artifacts, promoting the learning of subtle details. Our extensive experiments on public datasets demonstrated PID-Net’s significant superiority over state-of-the-art dehazing algorithms in both quantitative metrics and visual quality.
Loading....